Acoustic Emission Signal Recognition of Different Rocks Using Wavelet Transform and Artificial Neural Network

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

The Acoustic Emission Signal Recognition based on Wavelet Transform and RBF Neural Network

The acoustic emission (AE) technology can be used to assess the security condition of oil storage tank without opening pot. Signal recognition is a foundation to analyze the corrosion status for oil storage tanks. Because of inadequateness of the analysis method of parameters, a new acoustic emission signal recognition method is proposed based on wavelet transform and RBF neural network. AE sig...

متن کامل

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

Iris Recognition Using Wavelet Transform and Artificial Neural Networks

In this approach to get more accuracy of the iris recognition, is composed of many steps: capturing the iris image, determining the location of the iris boundaries, normalization, preprocessed using median filter to remove noise, using wavelet transform for two types of filter, Haar and Daubechies (db4), in order to extract the features and finally using the matching by artificial feed forward ...

متن کامل

Automatic recognition of alertness level by using wavelet transform and artificial neural network.

We propose a novel method for automatic recognition of alertness level from full spectrum electroencephalogram (EEG) recordings. This procedure uses power spectral density (PSD) of discrete wavelet transform (DWT) of full spectrum EEG as an input to an artificial neural network (ANN) with three discrete outputs: alert, drowsy and sleep. The error back propagation neural network is selected as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Shock and Vibration

سال: 2015

ISSN: 1070-9622,1875-9203

DOI: 10.1155/2015/846308